

ANNUAL COMPLIANCE REPORT 2023

Coleambally Irrigation Co-operative Limited

1. Contents

1.	Contents	2
2.	List of Tables	3
3.	List of Figures	4
4.	Statement of Compliance	5
5.	Executive Summary	6
6.	Plans of the Area of Operations, Authorised Works and Monitoring Sites	7
6.1	Coleambally Irrigation Area of Operations	7
6.2	Plans of Works and Monitoring Sites	9
7.	Water Management	12
7.1	Water Allocation	12
7.2	Surface and Groundwater Extraction	13
7.3	Estimated Annual Evaporation and Rainfall	16
7.4	Water Discharge	17
7.5	Distribution of Irrigation Intensity	21
7.6	Crop Water Use	22
7.7	Water Balance for the Area of Operations	24
8.	Salinity and Salt Load	25
8.1	Extraction Salinity	25
8.2	Discharge Salinity	27
8.3	Simple Salt Balance	30
9.	Groundwater Conditions within the Area of Operations	33
10.	Data Analysis and Presentation	38
10.1	Data Omissions and Discrepancies	38
11.	New Measures to Limit Groundwater Recharge and Salinity Discharge	39
11.1	Water Use Policy	39
11.2	Salinity Discharge	39
12.	Environment Protection Licence	40
12.1	Water Quality	40
12.2	Environmental Monitoring	42
12.3	Chemical Use	43
12.4	Reportable Incidents	44

Coleambally Irrigation Co-operative Limited

2. List of Tables

Table 5.1	Water usage in Coleambally Irrigation Area of Operations	6
Table 5.2	Crop areas and total metered usage (ML)	6
Table 7.1	2022/23 Reconciled monthly water volumes (ML) taken through Water Supply Works against Water Access Licences	13
Table 7.2	Reconciled monthly water volumes (ML) extracted at Main Canal Off-take (calendar month)	14
Table 7.3	Reconciled monthly volumes (ML) extracted at Col Bore (mid-month)	15
Table 7.4	Reconciled monthly volumes (ML) extracted at Hort Bore (mid-month)	15
Table 7.5	Rainfall and evaporation recorded at CICL Depot weather station in 2022/23 (calendar month)	16
Table 7.6	Monthly flow volumes (ML) at CCD FlumeGate escape on the Coleambally Catchment Drain (substituted for CCD (410191)) (calendar month)	18
Table 7.7	Monthly flow volumes (ML) at DC800A (410108) on the Drainage Channel DC800 (calendar month)	18
Table 7.8	Monthly flow volumes (ML) at CODWonga FlumeGate on the Coleambally Outfall Drain (substituted for CODA (410110)) (calendar month)	19
Table 7.9	Monthly flow volumes (ML) at CODD (410133) on the Coleambally Outfall Drain (calendar month)	19
Table 7.10	2022/23 Monthly flow volumes (ML) at Boona and Argoon FlumeGate escapes	20
Table 7.11	2022/23 Monthly flow volumes (ML) released without credit, released from drains and released to customers	20
Table 7.12	2022/23 Regional distribution of irrigation intensity (ML/ha)	21
Table 7.13	2022/23 Crop area, total crop use	22
Table 7.14	Crop areas and relative water usage over time	23
Table 7.15	2022/23 Annual water balance for each water supply work	24
Table 8.1	Monthly average salinity (μ S/cm) at Main Canal Off-take	25
Table 8.2	Monthly average salinity (µS/cm) at Col Bore	26
Table 8.3	Monthly average salinity (μ S/cm) at Hort Bore	26
Table 8.4	Monthly average salinity at Discharge Point CCD (410191) on the Coleambally Catchment Drain (μ S/cm)	27
Table 8.5	Monthly average salinity at Discharge Point DC800A (410108) on the Drainage Channel DC800 (μ S/cm)	28
Table 8.6	Monthly average salinity at Discharge Point CODA (410110) on the Coleambally Outfall Drain (μ S/cm)	28
Table 8.7	Monthly average salinity at Discharge Point CODD (410133) on the Coleambally Outfall Drain (μ S/cm)	29
Table 8.8	Salinity (μ S/cm) and salt load (Tonnes) entering CICL's Area of Operations in 2022/23	30
Table 8.9	Salinity (μ S/cm) and salt load (Tonnes) exiting Coleambally Irrigation Area in 2022/23	31
Table 8.10	Volume of water exiting CICL's Operational Area at CODD (410133), average salinity (μ S/cm) and calculated salt load (Tonnes) in 2022/23	32
Table 8.11	Simple salt balance (Tonnes) in 2022/23	32
Table 9.1	Piezometric level below natural surface; 0-12 m piezometers; August 2023 comparison of areas 1998, 2021 & 2022	34
Table 9.2	Piezometric level below natural surface; 12-60 m piezometers; August 2023 comparison of areas 1998, 2021 & 2022	34
Table 9.3	Piezometric level (mAHD); 0-12 m piezometers; August 2023 versus September 1998	36
Table 9.4	Piezometric level (mAHD); 12-60 m piezometers; August 2023 versus September 1998	36
Table 10.1	Data sources for licence sites	38
Table 12.1	Environmental monitoring licence point results in 2022/23	42
Table 12.2	CICL chemical usage in 2022/23	43

Figure 6.1	Current Area of Operations of CICL including benefited lands	8
Figure 6.2	CICL Works Plan	10
Figure 6.3	CICL Piezometer Plan	11
Figure 7.1	Annual general security allocations in the Murrumbidgee Valley since 1982/83	12
Figure 9.1	Piezometric level below natural surface; 0-12 m and 12-60 m piezometers August 2023	35
Figure 9.2	Piezometric level (mAHD); 0-12 m and 12-60 m piezometers August 2023	37
Figure 12.1	Water quality monitoring sites	41

4. Statement of Compliance

30 October 2023

The Annual Compliance Report 2022/23 is provided to meet the reporting requirements of Coleambally Irrigation Co-operative Limited (CICL) against operating licences:

- Combined Water Supply Work Approval and Water Use Approval 40CA401473 (Murrumbidgee regulated river water source) and Combined Water Supply Work Approval;
- Water Use Approvals for Groundwater extraction 40CA403808 and 40WA404593; and
- Environment Protection Licence No 4652.

I am pleased to advise that from 1 July 2022 to 30 June 2023, CICL has complied with all monitoring and reporting requirements of the:

- Combined Water Supply Work Approval and Water Use Approval 40CA401473, including the CICL Monitoring and Reporting Plan dated 16 March 2018;
- Groundwater Works Approvals 40CA403808, 40WA404593 and
- Environment Protection Licence No 4652.

To the best of my knowledge the information presented in this report is certified as being complete, true and accurate.

Clifford Ashby

Chief Executive Officer

5. Executive Summary

30 October 2023

The 2022/23 irrigation season saw a continuation of the wet conditions experienced in the previous season. Rainfall recorded for the irrigation season far exceeded the long-term average and was the highest rainfall recorded between July and June since 2010/11. The mid-Murrumbidgee Valley experienced a significant flooding event from September 2022 through to January 2023.

The season commenced with a general security allocation of 35% that reached 100% by the 16th of January. The key water statistics for the preceding two seasons are provided in the following table:

Table 5.1: Water usage in Coleambally Irrigation Area of Operations

Key Statistics	2022/23	2021/22	2020/21
Final Allocation	100%	100%	100%
Metered Usage to Customers	240,796 ML	249,873 ML	258,881 ML

Rainfall totals in the district exceeded the seasonal average with 683.8 mm recorded for the water year compared to the Long Term Average (LTA) of 401.4 mm.

The total evaporation for the 2022/23 water year was 1,393.4 mm which was lower than the LTA of 1,727.8 mm. The area under supplied irrigation water was 48,071 ha, compared to 57,808 ha in the 2021/22 water year.

Сгор	Area (Ha)	Total metered usage (ML)
Rice	4,878	62,626
Horticulture	1,556	5,394
Other Summer Crops	21,340	130,325
Winter Crops	20,297	28,405
Stock and Garden	N/A	8,258
Undefined	N/A	5,788
Total	48,071	240,796

Table 5.2: Crop areas and total metered usage (ML)

Note: The crop area data is supplied by CICL's customers at the beginning of the irrigation season and is independently verified by various means, however, the data serves only as an approximation of the area irrigated.

The high rainfall rate contributed to an increase in average watertable heights. The area of land with the water table within 2 m of the surface has increased to 514 ha, from 177 ha in the previous season, but still only accounts for less than 1% of the Coleambally Irrigation Area.

There were 5 reportable water quality incidents in the 2022/23 season at licenced discharge points where pollutants exceeded Notifiable levels as part of routine monitoring.

6. Plans of the Area of Operations, Authorised Works and Monitoring Sites

30 October 2023

6.1 Coleambally Irrigation Area of Operations

The following section is provided to satisfy condition 2.1 of the CICL Monitoring and Reporting Plan, which requires a plan to be presented of the Area of Operations as existing at 30 June including any amendments made by the inclusion and exclusion of lands.

The Coleambally Irrigation Area of Operations is located between the towns of Darlington Point and Jerilderie, New South Wales, in the southern Murray-Darling Basin of Australia as depicted in Figure 6.1.

From the 1 July 2022 to 30 June 2023 there were no requests made to the Minister to include or exclude land from the Area of Operations.

6. Plans of the Area of Operations, Authorised Works and Monitoring Sites

30 October 2023

Note: The term "benefited lands" is given to land that receives a benefit from our licence and/or licenced works but which are not defined as being within the Area of Operations.

6. Plans of the Area of Operations, Authorised Works and Monitoring Sites

30 October 2023

6.2 Plans of Works and Monitoring Sites

The following section is provided to satisfy condition 2.2 of the CICL Monitoring and Reporting Plan, which requires a plan (or plans) to be presented showing the current location of works listed in Schedule 1 of the CICL Monitoring and Reporting Plan and all monitoring sites listed in Attachments 1 and 2 of the Plan as at 30 June, including the location and extent of areas that are permanently or temporarily inundated to store or dispose of water, the boundary of the Area of Operations, the major supply and drainage channels and the major watercourses located within and adjacent to the Area of Operations.

The Combined Approval 40CA401473 and the Groundwater Work Approvals 40CA403808 and 40WA404593 include three water extraction works, namely: Coleambally Main Canal Off-take, Col Bore and Hort Bore.

The CICL Monitoring and Reporting Plan also includes four drainage discharge points; Coleambally Catchment Drain (CCD), Drainage Canal DC800 (DC800A), Coleambally Outfall Drain A (CODA) and Coleambally Outfall Drain D (CODD).

Figure 6.2 illustrates the location of all authorised water supply works and discharge monitoring sites as well as the location of the Kerarbury Channel Off-take Regulator, which supplies water to the benefited lands of the Kerarbury Irrigation Area. This map also includes the location and extent of the Coleambally Main Canal Off-stream Storage, the boundary of the Area of Operations, the channel and drainage network and the location of adjacent watercourses.

A total of 737 piezometers are located across the Area of Operations to monitor groundwater conditions in the shallow Shepparton Formation aquifer. The distribution of piezometers across the Area of Operations is shown in Figure 6.3.

30 October 2023

Figure 6.2: CICL Works Plan

Coleambally Irrigation Co-operative Limited 6. Plans of the Area of Operations, Authorised Works and Monitoring Sites

30 October 2023

Figure 6.3: CICL Piezometer Plan

Coleambally Irrigation Co-operative Limited

7. Water Management

30 October 2023

7.1 Water Allocation

The following section is provided to satisfy condition 2.5 of the CICL Monitoring and Reporting Plan, which requires commentary on the trends evident from the discharge, groundwater, extraction and water use monitoring data in the context of climate and water allocation conditions.

The 2022/23 irrigation season saw a closing allocation of 100% for the third consecutive season. The season's starting general security water allocation was 35%. The prior season's opening allocation was 30%. The final allocation for the year of 100%, announced in mid January, compared to 100% announced in early November in the previous year.

Figure 7.1: Annual general security allocations in the Murrumbidgee Valley since 1982/83

30 October 2023

7.2 Surface and Groundwater Extraction

The following section is provided to satisfy condition 2.10 of the CICL Monitoring and Reporting Plan, which requires reconciled monthly water volumes in megalitres extracted under licences held by CICL or any other licences nominating CICL authorised water supply works and deliveries to customers. The data presented below reflects the reconciled volumes and may not reflect time of extraction.

Table 7.1: 2022/23 Reconciled monthly water volumes (ML) taken through Water Supply Works against Water Access Licences

Surface Water Licences (Works Approval 40CA401473)	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Total (ML)
High Security Access Licence 40AL401469	0	0	0	0	2,005	0	101	0	0	0	0	0	2,106
High Security Access Licence 40AL417488	0	0	0	2,009	1,402	2,592	316	0	0	0	0	0	6,319
General Security Access Licence 40AL401471	0	9,313	2,385	0	0	0	0	42,312	42,708	7,170	19,806	0	123,694
General Security Access Licence 40AL405267	0	0	0	0	0	0	0	0	0	0	0	0	0
High Security Access Licence 40AL401470	0	0	0	0	70	0	0	0	0	0	0	0	70
High Security S & T Access Licence 40AL418050	0	0	0	0	3,269	0	0	0	0	0	0	0	3,269
Conveyance Access Licence 40AL402990	0	0	0	0	0	36,099	57,288	13,978	0	0	0	0	107,365
Supplementary Access Licence 40AL402991	0	1,000	4,000	1,000	1,000	3,000	0	0	0	0	0	0	10,000
Total	0	10,313	6,385	3,009	7,746	41,691	57,705	56,290	42,708	7,170	19,806	0	252,823
Aquifer Access Licence 40AL403806	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Total (ML)
Col Bore (Works Approval 40CA403808)	0	0	0	0	0	0	156	0	0	0	0	375	531
Hort Bore (Works Approval 40WA404593)	11	0	0	0	0	0	142	0	0	0	0	2	155
Total	11	0	0	0	0	0	298	0	0	0	0	377	686
Authorised Credits													287
Environmental/River Operational	0	0	521	0	0	8,437	11,953	11,284	12,151	4,943	12,482	0	61,771
Combined Total	11	10,313	6,906	3,009	7,746	50,128	69,956	67,574	54,859	12,113	32,289	377	315,567

Note: Monthly water volumes for surface water licences are reported in calendar month and aquifer access licence monthly volumes are reported in mid-month.

30 October 2023

Tables 7.2 to 7.4 are provided to satisfy condition 2.5 of the CICL Monitoring and Reporting Plan, which requires discussion of the trends evident from extraction data in the context of comparable data for at least the two previous years and a year at least five years prior.

For all three extraction points 2022/23 data is compared with the previous two seasons' data and with the 2016/17 season. Table 7.2 shows monthly reconciled volumes at the Coleambally Main Canal Off-take and may not reflect time of extraction.

Month	2022/23	2021/22	2020/21	2016/17
July	0	0	0	0
August	10,313	31,822	28,362	1,658
September	6,906	12,904	27,429	10,384
October	3,009	31,930	25,571	17,485
November	7,746	10,159	49,860	51,219
December	50,128	61,470	60,112	72,930
January	69,658	51,466	62,369	92,801
February	67,574	62,536	44,015	74,156
March	54,859	36,551	42,353	61,006
April	12,113	14,979	15,084	23,496
Мау	32,288	11,118	13,974	12,608
June	0	0	0	0
Total	314,594	324,935	369,129	417,743

Table 7.2: Reconciled monthly water volumes (ML) extracted at Main Canal Off-take (calendar month)

Tables 7.3 and 7.4 show monthly extractions from both Col Bore and Hort Bore. The Hort Bore is primarily used to supply high security water on demand outside of the normal CICL irrigation supply period.

The Col Bore was constructed by a qualified driller, as indicated by the construction log and in accordance with conditions (MW7040-00001) as confirmed during the *NRAR Compliance Audit and Inspection: Col Bore and Hort Bore* undertaken July 2020. During the reporting period the Col Bore maintained compliance under the NSW Non-Urban Water Metering Policy.

The Hort Bore was constructed in accordance with conditions (MW7040-00001) as confirmed during the *NRAR Compliance Audit and Inspection: Col Bore and Hort Bore* undertaken July 2020. During the reporting period the Hort Bore maintained compliance under the NSW Non-Urban Water Metering Policy.

Due to the difference between WaterNSW and CICL's timing of reading the meters, the data presented below reflects the reconciled volumes and may not reflect time of extraction.

Groundwater bore usage is largely influenced by the value of temporary surface water relative to pumping costs. Consequently overall extractions from our groundwater bores is lower compared to 2021/22.

30 October 2023

Table 7.3: Reconciled monthly volumes (ML) extracted at Col Bore (mid-month)							
Month	2022/23	2021/22	2020/21	2016/17			
July	0	0	0	0			
August	0	0	0	0			
September	0	0	0	0			
October	0	0	0	0			
November	0	0	30	340			
December	0	0	437	425			
January	156	148	83	626			
February	0	378	251	626			
March	0	271	10	448			
April	0	0	0	250			
Мау	0	0	0	0			
June	375	0	0	0			
Total	531	797	811	2,715			

Table 7.4: Reconciled monthly volumes (ML) extracted at Hort Bore (mid-month)

Month	2022/23	2021/22	2020/21	2016/17
July	11	0	0	0
August	0	8	2	0
September	0	3	3	0
October	0	0	44	0
November	0	0	88	0
December	0	5	57	0
January	142	0	37	326
February	0	0	276	325
March	0	0	102	288
April	0	0	0	322
Мау	0	0	0	478
June	2	4	11	54
Total	155	20	620	1,793

30 October 2023

7.3 Estimated Annual Evaporation and Rainfall

The following section is provided to satisfy condition 2.13 a) and b) of the CICL Monitoring and Reporting Plan, which requires estimated annual volumes for rainfall and evapotranspiration.

CICL records both rainfall and evaporation at the CICL Depot. Table 7.5 shows annual rainfall and evaporation was recorded as 683.8 mm and 1,393.4 mm respectively, this represents 170% and 81% of the long-term average (LTA).

Month				
Month	Rainfall (mm)	LIA Rainfall (mm)	Evaporation (mm)	LIA Evaporation (mm)
July	9.5	32.3	39.5	38.8
August	51.8	34.4	47.8	64.2
September	62.3	33.4	67.7	100.9
October	236.6	40.4	103.4	162.4
November	108.6	32.9	142.9	209.4
December	31.2	31.1	214.6	260.4
January	33.0	34.6	214.9	272.7
February	0.0	28.0	223.0	224.5
March	35.0	30.3	163.0	183.4
April	51.2	31.8	84.7	110.6
Мау	10.8	34.7	52.7	62.9
June	53.8	37.5	39.2	37.6
Total	683.8	401.4	1,393.4	1,727.8

Table 7.5: Rainfall and evaporation recorded at CICL Depot weather station in 2022/23 (calendar month)

Coleambally Irrigation Co-operative Limited

7. Water Management

30 October 2023

7.4 Water Discharge

The following section is provided to satisfy condition 2.11 of the CICL Monitoring and Reporting Plan, which requires a report on the monthly water volumes in megalitres from discharge monitoring sites. This section is also provided to satisfy condition 2.5 which requires a discussion of the trends evident from discharge monitoring sites from at least the two previous years and a year at least five years prior.

Tables 7.6 to 7.9 show monthly average drainage flows at four discharge monitoring points. For all four discharge monitoring points 2022/23 data is compared with the previous two seasons' data and with the 2016/17 season.

The licenced discharge monitoring points have WaterNSW gauge sites present. However the flow data obtained from the sites is generally not considered to be accurate. In addition to backwater impacts from downstream creek levels, weed growth and backwater from downstream structures may impact the accuracy of the stage-discharge rating curves particularly at CODA (410110), CCD (410191) and CODD (410133). Where CICL possesses accurate flow data from adjacent CICL FlumeGate regulators this data may be used to substitute the WaterNSW data.

Table 7.10 shows the monthly total volume of water supplied through the Boona and Argoon escapes which supply planned releases of water through CODA and CODWonga. This table is provided to satisfy condition M2.5 of EPL 4652, which requires samples of irrigation wastewater for the months specified under condition M2.3 except when water discharged through the drainage system is comprised entirely of supply water.

Table 7.11 shows the monthly total volume of water released without credit, released from drains and released to customers to satisfy condition 2.11 of the CICL Monitoring and Reporting Plan.

30 October 2023

Table 7.6: Monthly flow volumes (ML) at CCD FlumeGate escape on the Coleambally Catchment Drain (substituted for CCD (410191)) (calendar month)

Month	2022/23	2021/22	2020/21	2016/17
July	0	0	0	0
August	0	49	0	0
September	0	64	1,959	100
October	1,264	83	2,161	419
November	799	30	1,677	0
December	0	2,859	4,554	2,433
January	0	4,992	1,439	2,852
February	954	5,829	1,638	4,155
March	3,936	626	2,522	7,564
April	91	852	1,592	784
Мау	5,695	85	1,889	699
June	0	964	0	70
Total	12,739	16,433	19,431	19,076
Average	1,062	1,369	1,619	1,590
Median	46	356	1,658	559

Note: The Coleambally Catchment Drain is used to deliver water into Yanco Creek for WaterNSW. The CCD FlumeGate escape only records flows exiting the CICL supply system and may not reflect total flow volumes through the Coleambally Catchment Drain. Please refer to section 10.1 for more information.

Table 7.	.7: Monthly	flow volumes	(ML) at	DC800A	(410108)	on the	Drainage	Channel
DC800	(calendar m	ionth)						

Month	2022/23	2021/22	2020/21	2016/17
July	1	94	28	295
August	19	149	694	102
September	406	757	1,099	365
October	4,743	434	657	23
November	2,972	2,405	893	211
December	1,661	2,152	2,850	621
January	2,152	3,792	2,432	233
February	2,368	4,269	1,215	897
March	2,106	1,626	2,250	2,589
April	1,483	2,214	567	909
Мау	629	222	140	355
June	1,222	1,579	687	1,269
Total	19,762	19,693	13,512	7,869
Average	1,647	1,641	1,126	656
Median	1,572	1,603	794	360

Note: DC800 is also used to deliver water into Yanco Creek for WaterNSW.

30 October 2023

Table 7.8: Monthly flow volumes (ML) at CODWonga FlumeGate on the Coleambally Outfall Drain (substituted for CODA (410110)) (calendar month)

Month	2022/23	2021/22	2020/21	2016/17
July	0	41	32	694
August	562	872	184	254
September	1,268	802	542	1,995
October	19,566	203	0	2,102
November	7,884	2,580	1,288	1,133
December	4,649	2,734	2,052	49
January	6,824	2,310	0	1,104
February	4,876	1,742	2,829	1,941
March	2,450	3,442	3,824	4,406
April	2,313	1,082	1,342	2,216
Мау	1,880	22	323	1,333
June	1,747	2,273	642	2,565
Total	54,019	18,103	13,058	19,792
Average	4,502	1,509	1,088	1,649
Median	2,382	1,412	592	1,637

Note: The Coleambally Outfall Drain is also used to supply customers with water.

Table 7.9: Monthly flow volumes (ML) at CODD (410133) on the Coleambally Outfall Drain (calendar month)

Month	2022/23	2021/22	2020/21	2016/17
July	0	19	0	71
August	0	0	0	56
September	0	0	0	490
October	13,270	0	0	1,194
November	70,336	0	0	89
December	69,525	22	72	130
January	609	75	2	58
February	777	0	0	64
March	291	11	112	6
April	524	0	0	167
Мау	222	0	0	45
June	700	0	74	20
Total	156,254	127	260	2,390
Average	13,021	11	22	199
Median	567	0	0	68

Note: Monthly flow volumes at CODD have historically been substituted with data from an adjacent FlumeGate escape (CODOaklands). Due to significant flooding the FlumeGate escape was inoperable for the 2022/23 season. Please refer to section 10.1 for more information.

Fable 7.10: 2022/23 Monthly flow volumes (ML) at Boona and Argoon FlumeGat	te
escapes	

Month	Boona FlumeGate Escape	Argoon FlumeGate Escape
July	0	0
August	0	610
September	168	1,103
October	195	420
November	72	431
December	177	488
January	0	868
February	0	860
March	0	1,029
April	6	88
Мау	0	1,226
June	172	541
Total	790	7,664

 Table 7.11: 2022/23 Monthly flow volumes (ML) released without credit, released from drains and released to customers

Month	Released without credit from escapes (calendar month)	Discharged for environmental or river operational purposes (calendar month)	Delivered to CICL Customers (mid-month)
July	0	0	0
August	5	0	249
September	117	521	6,963
October	1,895	0	2,231
November	1,441	0	862
December	40	8,437	20,437
January	66	11,953	48,259
February	4	11,284	54,541
March	0	12,151	55,891
April	122	4,943	22,308
Мау	5	12,483	10,880
June	1,375	0	18,175
Total	5,070	61,772	240,796

Coleambally Irrigation Co-operative Limited

7. Water Management

30 October 2023

7.5 Distribution of Irrigation Intensity

The following section is provided to satisfy condition 2.13 i) of the CICL Monitoring and Reporting Plan, which requires a report on the distribution of irrigation intensity in at least three intensity ranges for the main supply sub-divisions.

The irrigation intensity for the main supply sub-divisions is represented in Table 7.12.

The Coleambally Irrigation Area consists of all farms with access to the CICL drainage network and is comprised of farmland that has historically been the most intensively irrigated farmland within the Area of Operations.

The West Coleambally Water Management Area is comprised of landholdings that have access to the supply network from the Coleambally Outfall Drain and has historically been the least intensively irrigated farmland within the Area of Operations.

Coleambally External refers to those landholders that are situated adjacent to the Coleambally Irrigation Area but do not have access to the CICL drainage network.

Region	Use (ML)	Area (ha)	Intensity (ML/ha)	% of use
Coleambally Irrigation Area	186,531	79,495	>1ML	77
West Coleambally Water Management Area	8,517	313,578	<0.1ML	4
Coleambally External	45,748	71,129	>0.1ML<1ML	19
Total	240,796	464,202		

Table 7.12: 2022/23 Regional distribution of irrigation intensity (ML/ha)

30 October 2023

7.6 Crop Water Use

The following section is provided to satisfy conditions 2.5 and 2.13 c) through to h) of the CICL Monitoring and Reporting Plan, which requires discussion of the trends evident in the estimated annual water deliveries for rice, horticulture, other summer crops, winter crops, domestic and stock uses, and their estimated annual crop area.

Table 7.13 shows the estimated annual values for water deliveries for crop types, with the applicable areas for the water uses estimated from locally relevant crop water use factors.

Table 7.13: 2022/23 Crop area, total crop use

Сгор	Area (Ha)	Total ML
Rice	4,878	62,626
Horticulture	1,556	5,394
Other Summer Crops (including pasture)	21,340	130,325
Winter Crops	20,297	28,405
Stock and Garden		8,258
Undefined		5,788
Total	48,071	240,796

The crop area data is supplied by CICL's customers at the beginning of the irrigation season and is independently verified by various means, however, the data serves only as an approximation of the area irrigated.

The irrigated crop area within the Coleambally Area of Operations for the 2022/23 season decreased by approximately 17% over the previous season. Flooding and high rainfall from September through to November impacted the ability of our customers to sow summer crops. Water use intensity for both summer and winter crops was higher than the previous season, with low temporary water price and below average rainfall in January and February contributing to high water use.

Table 7.14 on the following page indicates the change in area of seven major crops in the Coleambally Irrigation Area over the last 25 years.

Table 7.14:	Crop areas and	relative water	usage over time
	crop areas and	relative water	usuge over time

	Rice		Corn/	Maize	Soybe	ans	Cotton		Wheat		Pasture	3	Canola	1	
Season	Area (ha)	Proportion of delivery (%)	Total (%)												
2022/23	4,878	20.70	4,024	10.11	350	1.26	10,614	24.40	11,646	5.38	4,838	4.90	6,319	2.94	69.7
2021/22	4,643	23.5	4,583	10.3	153	0.4	13,298	31.8	16,275	10.9	5,485	3.8	5,425	3.9	84.6
2020/21	4,944	31.0	4,654	13.9	380	0.9	6,269	18.9	16,875	13.9	5,269	5.2	3,064	2.5	86.3
2019/20	320	3.4	856	9.2	0	0	934	10.0	2,147	23.0	2,285	24.4	566	6.1	76.1
2018/19	236	3.2	2,252	24.1	0	0	3,641	39.8	7,541	11.0	3,945	9.1	1,115	2.2	89.4
2017/18	6,869	35.0	4,442	14.0	2,393	1.0	5,796	21.0	6,387	6.0	3,921	5.0	2,323	2.0	88.0
2016/17	11,484	53.6	5,105	13.5	892	1.9	6,623	17.9	8,462	3.5	10,679	4.1	1,512	1.2	95.7
2015/16	3,603	34.6	8,462	13.5	1,883	3.0	5,105	20.6	11,484	14.8	6,623	7.0	892	0.1	94.0
2014/15	9,103	44.0	6,757	13.0	1,666	2.0	2,602	7.0	14,226	18.0	4,737	4.0	1,716	1.0	91.0
2013/14	12,500	43.6	4,358	8.4	1,734	2.4	5,587	6.9	15,071	9.8	5,264	2.8	2,540	1.5	75.4
2012/13	19,071	52.7	4,872	7.7	2,583	3.9	2,089	3.0	13,698	7.2	6,545	3.6	4,182	1.3	79.4
2011/12	16,745	62.1	4,767	8.2	2,238	2.7	5,280	7.9	15,989	8.7	7,472	4.0	5,244	1.6	91.2
2010/11	14,512	68.3	4,367	7.2	1,240	1.5	885	1.4	11,334	5.1	8,119	4.2	3,381	1.5	89.2
2009/10	3,668	46.0	311	2.0	495	1.0	0	0	10,635	10.0	6,903	12.0	2,523	2.0	73.0
2008/09	2,135	33.1	2,472	3.4	308	1.4	0	0	4,215	9.5	4,481	16.3	1,471	4.9	68.7
2007/08	90	1.4	941	1.2	152	0.7	0	0	6,575	20.0	5,004	20.0	1,584	6.1	49.4
2006/07	8,518	54.3	1,863	7.6	478	0.8	0	0	12,509	15.9	9,958	7.8	1,602	1.0	87.4
2005/06	18,025	62.8	3,306	7.0	2,106	2.9	0	0	13,610	8.4	15,440	8.7	1,748	0.9	90.6
2004/05	8,142	44.0	3,671	7.2	1,495	2.2	0	0	20,287	18.8	12,865	10.8	2,681	1.3	84.3
2003/04	12,597	55.8	3,545	5.7	1,938	3.5	0	0	21,192	15.0	12,131	7.5	1,763	0.7	88.0
2002/03	11,395	46.0	4,788	9.3	1,788	1.0	0	0	21,346	20.4	10,183	7.4	2,095	1.7	85.8
2001/02	27,493	67.5	3,808	4.2	3,297	3.4	0	0	21,103	9.2	11,581	6.1	2,191	0.6	91.0
2000/01	30,440	73.9	4,074	5.7	4,551	5.9	0	0	14,276	4.6	11,998	4.7	2,153	0.4	95.2
1999/00	24,138	77.7	1,178	3.1	2,185	3.9	0	0	12,649	6.1	7,485	4.4	2,152	0.7	95.9
1998/99	24,491	73.8	1,059	1.3	4,339	5.7	0	0	13,963	1.7	13,879	8.1	2,184	1.7	92.3

30 October 2023

7.7 Water Balance for the Area of Operations

The following section is provided to satisfy condition 2.12 of the CICL Monitoring and Reporting Plan, which requires an annual water balance estimate for the supply system taking into account deliveries, net channel losses and changes in the volume of water held in offline storages. This section is also provided to satisfy condition R4.3 (a) of the Environment Protection Licence, which requires the volume of all inflows of water to the premises, the volume of all surface water discharges from the premises and an estimate of all accessions of water to groundwater in or outside of the premises.

Table 7.15 indicates the estimated annual volumes of net channel losses, including evaporation, rainfall and seepage for the 2022/23 irrigation season.

Source	Volume (ML)
River	314,881
Groundwater	686
Total Extractions	315,567
Customers	240,796
River Operational & Environmental	61,771
Total Deliveries	302,567
Evaporation	6,109
Seepage	9,048
Rainfall	-8,162
Discharged without credit	5,070
Offline storage loss	935
Change in storage volume	0
Total Losses	13,000

Table 7.15: 2022/23 Annual water balance for each water supply work

30 October 2023

Sections 8.1 and 8.2 are provided to comply with condition 2.5 of the CICL Monitoring and Reporting Plan, which requires a discussion of the trends evident from the salinity monitoring data for at least the two previous years and a year at least five years prior.

8.1 Extraction Salinity

Salinity data was omitted from all sites during periods where no flow was detected. Where flow was present with no salinity reported the monthly average was used.

The monthly average salinity readings for the Main Canal Off-take were generally higher in the 2022/23 season compared to the previous season, possibly due to the effect of widespread flooding in the Murrumbidgee River upstream of the Main Canal Off-take. The data in Tables 8.2 to 8.3 illustrates that monthly average salinity in the last two seasons at the Col Bore and Hort Bore has remained stable.

Month	2022/23	2021/22	2020/21	2016/17
July	No Flow	No Flow	No Flow	187
August	150	136	227	207
September	177	156	176	200
October	169	155	162	218
November	161	141	156	203
December	161	155	95	200
January	111	135	90	153
February	122	135	144	119
March	133	121	128	119
April	277	154	214	149
Мау	286	155	138	156
June	No Flow	No Flow	No Flow	192
Average	175	144	153	175
Median	161	148	150	190

Table 8.1: Monthly average salinity (μ S/cm) at Main Canal Off-take

Month	2022/23	2021/22	2020/21	2016/17
July	No Flow	No Flow	No Flow	No Flow
August	No Flow	No Flow	No Flow	No Flow
September	No Flow	No Flow	No Flow	No Flow
October	No Flow	No Flow	No Flow	No Flow
November	No Flow	No Flow	760	610
December	No Flow	No Flow	760	610
January	763	763	760	610
February	No Flow	763	767	610
March	No Flow	763	767	610
April	No Flow	No Flow	No Flow	610
Мау	No Flow	No Flow	No Flow	No Flow
June	763	No Flow	No Flow	No Flow
Average	763	763	763	610
Median	763	763	760	610

Table 8.3: Monthly average salinity (uS/cm) at Hort Bore

Month	2022/23	2021/22	2020/21	2016/17
July	195	No Flow	No Flow	No Flow
August	No Flow	195	189	No Flow
September	No Flow	195	189	No Flow
October	No Flow	No Flow	189	No Flow
November	No Flow	No Flow	199	No Flow
December	No Flow	195	194	No Flow
January	195	No Flow	199	280
February	No Flow	No Flow	198	280
March	No Flow	No Flow	198	280
April	No Flow	No Flow	No Flow	280
Мау	No Flow	No Flow	No Flow	280
June	195	195	198	280
Average	195	195	195	280
Median	195	195	198	280

30 October 2023

8.2 Discharge Salinity

Salinity data was omitted from all sites during periods where no flow was detected. Where flow was present with no salinity reported, the monthly average was used.

Tables 8.4 to 8.7 show monthly average salinity readings at four discharge monitoring points. Electrical Conductivity (EC) data is provided from WaterNSW gauging stations. However, to obtain more accurate readings, data without flow from a metered site are omitted and likewise metered flows without salinity are given monthly corrected average EC. In these Tables, 2022/23 data is compared with data from the previous two seasons and with the 2016/17 season.

The monthly average salinity in the 2022/23 season at the discharge monitoring points has generally increased compared to previous seasons. Of note is the monthly average salinity at CCD, which is significantly higher than all previous seasons between February and June. This may be attributed to the seasonal effects of flood water exiting the system through the CCD drain, or the backflow effects of the Yanco creek on the WaterNSW meter.

Table 8.4: Monthly average salinity at Discharge Point CCD (410191) on the Coleambally Catchment Drain (μ S/cm)

Month	2022/23	2021/22	2020/21	2016/17
July	No Flow	No Flow	No Flow	No Flow
August	No Flow	152	No Flow	No Flow
September	No Flow	134	269	260
October	153	148	222	333
November	187	16	236	371
December	No Flow	242	125	214
January	No Flow	244	167	328
February	553	151	154	166
March	680	138	131	133
April	455	161	274	231
Мау	445	174	132	197
June	No Flow	149	No Flow	305
Average	412	155	190	254
Median	450	151	167	246

Table 8.5: Monthly average salinity at Discharge Point DC800A (410108) on the Drainage Channel DC800 (μ S/cm)

Month	2022/23	2021/22	2020/21	2016/17
July	198	266	121	228
August	545	280	196	243
September	220	300	239	214
October	180	323	253	247
November	198	296	303	351
December	297	246	238	345
January	229	163	238	332
February	191	160	239	252
March	175	169	197	178
April	202	169	227	228
Мау	313	180	369	258
June	289	163	265	261
Average	253	226	240	261
Median	211	213	239	249

Table 8.6: Monthly average salinity at Discharge Point CODA (410110) on the Coleambally Outfall Drain (μ S/cm)

Month	2022/23	2021/22	2020/21	2016/17
July	No Flow	128	196	445
August	110	128	223	475
September	114	176	158	327
October	273	244	No Flow	246
November	381	153	213	246
December	500	211	325	240
January	353	360	No Flow	198
February	241	284	506	152
March	271	331	541	269
April	287	215	501	238
Мау	377	203	147	252
June	236	217	87	284
Average	286	221	290	281
Median	273	213	218	249

30 October 2023

Table 8.7: Monthly average salinity at Discharge Point CODD (410133) on the Coleambally Outfall Drain (μ S/cm)

Month	2022/23	2021/22	2020/21	2016/17
July	No Flow	206	No Flow	275
August	No Flow	No Flow	No Flow	275
September	No Flow	No Flow	No Flow	275
October	184	No Flow	No Flow	275
November	230	No Flow	No Flow	434
December	303	255	157	524
January	515	296	157	502
February	326	No Flow	No Flow	502
March	299	213	157	502
April	279	No Flow	No Flow	238
Мау	310	No Flow	No Flow	273
June	267	No Flow	157	267
Average	301	243	157	362
Median	299	234	157	275

30 October 2023

8.3 Simple Salt Balance

The following section is provided to satisfy conditions 2.14, 2.15 and 2.16 of the CICL Monitoring and Reporting Plan, which requires a report on the volume, salinity and salt load of extractions and discharges with a simple annual salt balance representing the imported, exported and retained salt load for the area.

The salt load is calculated using a daily average EC and total daily salt load. Where daily salinity was not available the monthly average salinity (μ S/cm) was used to calculate salt load.

The following tables depict actual numbers for flow (ML) and computed salt load (tonnes) based on daily readings however the salinity (μ S/cm) is displayed as a monthly average.

2022/23	Main Canal			Col Bore				Hort Bore	
Month	ML	µS/cm	Salt (T)	ML	µS/cm	Salt (T)	ML	µS/cm	Salt (T)
July	0	0	0	0	0	0	11	195	1
August	10,313	150	924	0	0	0	0	0	0
September	6,905	177	779	0	0	0	0	0	0
October	3,009	169	328	0	0	0	0	0	0
November	7,746	161	796	0	0	0	0	0	0
December	52,491	161	5,384	0	0	0	0	0	0
January	67,296	111	4,774	156	763	76	142	195	18
February	67,611	122	5,300	0	0	0	0	0	0
March	54,963	133	4,320	0	0	0	0	0	0
April	12,114	277	2,217	0	0	0	0	0	0
Мау	32,433	286	6,042	0	0	0	0	0	0
June	0	0	0	375	763	183	2	195	0
Sub Total	314,881		30,864	531		259	155		19
Salt Total	31,142	ML Total	315.567						

Table 8.8: Salinity (μ S/cm) and salt load (Tonnes) entering CICL's Area of Operations in 2022/23

30 October 2023

Tombullen is an in-line storage used by WaterNSW to buffer Murrumbidgee downstream demand. It is located off the main canal at the start of CICL's supply system. Whilst it is not a discharge monitoring site under the CICL Monitoring and Reporting Plan it does, however, account for a significant volume of water (and hence, salt) delivered by CICL through our main extraction site each season. For the salt load tables actual volume (ML) and computed total salt (Tonnes) are used, however salinity (μ S/cm) is displayed as a monthly average.

2022/23	Draina	nage Canal DC800A		Coleamb	ally Outfall (CODA)	Drain A	Coleambally Catchment Drain (CCD)			Tombullen		
Month	ML	µS/cm	Salt (T)	ML	µS/cm	Salt (T)	ML	µS/cm	Salt (T)	ML	µS/cm	Salt (T)
July	1	198	0	0	0	0	0	0	0	0	0	0
August	19	545	3	562	110	59	0	0	0	0	0	0
September	406	221	58	1,268	114	175	0	0	0	521	167	56
October	4,743	180	491	19,566	273	3,521	1,264	153	124	0	0	0
November	2,972	198	312	7,884	381	1,673	799	187	95	0	0	0
December	1,661	297	322	4,649	500	1,499	0	0	0	8,437	166	875
January	2,151	229	309	6,824	353	1,395	0	0	0	11,953	110	832
February	2,368	191	280	4,876	241	742	954	553	346	9,822	118	772
March	2,106	175	232	2,450	271	412	3,936	680	1,684	7,991	135	640
April	1,483	202	194	2,313	287	398	91	455	26	4,865	317	1,016
Мау	629	313	124	1,880	377	458	5,695	445	1,627	6,706	328	1,452
June	1,223	289	242	1,747	236	300	0	0	0	0	0	0
Sub Total	19,762		2,567	54,019		10,632	12,739		3,902	50,295		5,643
Salt Total	22,744	ML Total	136,815									

Table 8.9: Salinity (µS/cm) and salt load (Tonnes) exiting Coleambally Irrigation Area in 2022/23

30 October 2023

The seasonal flow, salinity and salt load for the CODD is displayed separately in Table 8.10 as it is situated directly downstream from the site CODA. Including both sites in the same table would lead to double counting of the salt and flow data.

Table 8.10: Volume of water exiting CICL's Operational Area at CODD (410133), monthly average salinity (μ S/cm) and calculated salt load (Tonnes) in 2022/23

2022/23	Coleambally Outfall Drain D (CODD)							
Month	ML	μS/cm	Salt (T)					
July	0	0	0					
August	0	0	0					
September	0	0	0					
October	13,270	184	1,622					
November	70,336	230	10,392					
December	69,525	303	12,683					
January	609	515	181					
February	777	326	163					
March	291	299	52					
April	524	279	96					
Мау	222	310	44					
June	700	267	114					
Total	156,254		25,347					

Note: Due to a significant flood event the volume of water exiting CICL's Operational area in November and December has been interpolated using a limited data set. Please refer to section 10.1 for more information.

Table 8.11 represents a simple annual salt balance comprising the imported, exported and retained salt load for the area associated with each separate water supply work.

Inflow Sites	Imported Salt (T)	Outflow Sites	Exported Salt (T)
Main Canal Off-take	30,864	Drainage Canal DC800 A (DC800A)	2,567
Col Bore	259	Coleambally Outfall Drain A (CODA)	10,632
Hort Bore	19	Coleambally Catchment Drain (CCD)	3,902
		Tombullen	5,643
Total	31,142		22,744
Balance	8,398		

Table 8.11: Simple salt balance (Tonnes) in 2022/23

Coleambally Irrigation Co-operative Limited

9. Groundwater Conditions within the Area of Operations

30 October 2023

The following section is provided to satisfy condition 2.17 of CICL Monitoring and Reporting Plan, which requires a report on monitoring of groundwater conditions by means of piezometers in accordance with monitoring and reporting requirements.

CICL has a network of piezometers throughout its Area of Operations which is used to monitor groundwater conditions. Attachment 2 of the CICL Monitoring and Reporting Plan requires that piezometers be read annually in August (+/- 2 weeks). It is CICL's practice to read them again in March to have a more complete understanding of groundwater conditions affecting our area. The related data is analysed using Esri ArcGIS and MS Excel software.

In August 2023, 673 of CICL's 737 licensed piezometers were read of which 83 were recorded as being dry. Of the 64 piezometers not read, 14 were recorded as destroyed, 4 were recorded as not found and 46 were recorded as blocked.

Piezometers are read to an accuracy of +/-5 cm with the data obtained presented as per the Licence monitoring requirements. Data analysis and mapping is based on a split set of data being: pressure levels from the upper Shepparton aquifer via piezometers < 12 m deep; and pressure levels from the lower Shepparton aquifer via piezometers 12-60 m deep.

Readings from the upper Shepparton Aquifer represent the water table, while readings from the lower Shepparton aquifer represent the piezometric level of the lower confined aquifer.

All piezometers with a recorded depth are mapped, except those recorded as dry, blocked, buried or otherwise damaged.

For comparative purposes, piezometric levels in the previous two years and in the baseline year of 1998 are presented along with the current year. The inclusion of the previous two years highlights the change in conditions from the last season to the present, whilst the inclusion of the baseline year allows a comparison with groundwater conditions in 1998.

Figure 9.1 is a contour map of the piezometric levels below natural surface for August 2023. A 3D surface of piezometric levels was created from point measurements (depth to piezometric level below natural surface at each piezometer) by using the Inverse Distance Weighted (IDW) method of interpolation. This method requires inputs of XY locational coordinates and a Z coordinate for the piezometric level.

Tables 9.1 and 9.2 are tabular representations of Figure 9.1. From Table 9.1 for 0-12 m depth piezometers 33,314 ha or 35% of the mapped groundwater area were located in the 0-4 m zone in 2023, which in Figure 9.1 is represented in red, orange and yellow combined. This compares to 17,522 ha in 2022. For the same period there was also an increase in piezometric level, known as standing water level, within 2 metres of the surface from 177 ha to 514 ha.

In 2019/20 CICL improved the reporting practices for piezometric levels resulting in portions of land within the Coleambally Irrigation Area denoted by the label 'no data'. This area equates to 1,901 ha or 2% of the Coleambally Irrigation Area for the 0-12 m piezometric level. 56 piezometers within the 0-12 m range were recorded as dry in August 2023, compared to 66 in August 2022.

9. Groundwater Conditions within the Area of Operations

30 October 2023

Table 9.1: Piezometric level below natural surface; 0-12 m piezometers; August 2023 comparison of areas 1998, 2021 & 2022

Piezometric Level Below Natural Surface (m)	Years and (ha)	d Area of	Piezomet	Change in Area of Piezometric Level (ha) [+ = increasing][- = decreasing]		
	2023	2022	2021	2023 vs 1998	2023 vs 2022	
Less than 2 metres	514	177	61	36,041	-35,527	337
Between 2 and 4 metres	32,800	17,345	10,115	41,559	-8,759	15,455
Greater than 4 metres	60,587	76,400	83,146	18,202	42,385	-15,813
No data	1,901	1,880	2,480	0	1,901	21
Total	95,802	95,802	95,802	95,802		

Table 9.2: Piezometric level below natural surface; 12-60 m piezometers; August 2023 comparison of areas 1998, 2021 & 2022

Piezometric Level Below Natural	Years and (ha)	d Area of I	Piezometr	ic Level	Change in Area of Piezometric Level (ha) [+ = increasing][- = decreasing]		
Surface (m)	2023	2022	2021	1998	2023 vs 1998	2023 vs 2022	
Less than 2 metres	24	23	59	23,024	-23,000	1	
Between 2 and 4 metres	17,442	6,561	2,900	33,481	-16,039	10,881	
Greater than 4 metres	78,336	89,218	92,843	39,297	39,039	-10,882	
No data	0	0	0	0			
Total	95,802	95,802	95,802	95,802			

Table 9.2 compares the 12–60 m range in 2023 and demonstrates that the watertable has risen from the previous two seasons, particularly within the 2-4 m range, which is assumed to be in response to the higher rainfall experienced and increased irrigation. In 2021 there was 2,900 ha with a piezometric level between 2 and 4 metres of the surface, and in 2023 that figure has increased to 17,442 ha.

17,466 ha or 18% of mapped standing water level area existed in the 0-4 m zone in 2023. This area is higher than the 6.9% in 2022.

9. Groundwater Conditions within the Area of Operations

30 October 2023

Figure 9.1: Piezometric level below natural surface; 0-12 m and 12-60 m piezometers August 2023

Coleambally Irrigation Co-operative Limited

9. Groundwater Conditions within the Area of Operations

30 October 2023

Figure 9.2 depicts the piezometric level as converted to the Australian Height Datum (AHD) and mapped for all the 0-12 m and 12-60 m piezometers. These are the upper and lower parts of the Shepparton Aquifer, respectively. These levels represent the piezometric level height above sea level and can be used to identify the direction of groundwater flow. In general, the direction of groundwater flow is West-South-West.

Tables 9.3 and 9.4 are tabular representations of Figure 9.2.

Table 9.3: Piezometric level (mAHD); 0-12 m piezometers; August 2023 versus September 1998

Piezometric Level (AHD)	2023 Area (Ha)	1998 Area (Ha)
123 – 127 (higher)	699	4,151
119 - 122	23,333	39,182
115 - 118	37,728	31,548
111 - 114	30,991	11,211
107 - 110	1,150	5,724
94 – 106 (lower)	0	3,986
No Data	1,901	0
Total	95,802	95,802

Table 9.4: Piezometric level (mAHD); 12-60 m piezometers; August 2023 versus September1998

Piezometric Level (AHD)	2023 Area (Ha)	1998 Area (Ha)
123 – 127 (higher)	0	6,381
119 - 122	11,822	42,337
115 - 118	32,476	34,921
111 - 114	34,472	11,432
107 - 110	13,000	731
94 – 106 (lower)	4,032	0
No Data	0	0
Total	95,802	95,802

9. Groundwater Conditions within the Area of Operations 30 October 2023

Figure 9.2: Piezometric level (mAHD); 0-12 m and 12-60 m piezometers August 2023

10.1 Data Omissions and Discrepancies

This section identifies the variations, discrepancies, data omissions and details of any actions undertaken or proposed to remedy any monitoring or reporting deficiencies in satisfying condition 2.6 of the CICL Monitoring and Reporting Plan.

The mid-Murrumbidgee Valley experienced a significant flooding event from September 2022 through to January 2023. Both the NSW DPI hydrometrics sites and CICL FlumeGate regulators were submerged or otherwise inoperable for long periods, resulting in unreliable data. Due to the significant flooding unknown volumes of water entered and exited the CICL Area of Operation, bypassing licenced sites. Under condition 3 of the CICL Monitoring and Reporting Plan CICL may include data of acceptable quality from other sources to meet the monitoring and reporting requirements of the Plan. Data for all licenced sites have been provided where possible, with data substitutions appropriately noted in Table 10.1.

The flow data for the CODA site has been calculated using data from both the CODA (410110) and CICL FlumeGate CODWonga. From 8 October to 20 November 2022 the FlumeGate was inoperable due to flooding, and data from CODA (410110) has been substituted. From 24 to 27 February 2023 the FlumeGate was inoperable due to telemetry issues, with the flow rate calculated by interpolation.

The flow data from the CICL FlumeGate Escape is used in conjunction with the continuous EC data from the WaterNSW gauge to compute salt load. The WaterNSW CCD gauge is impacted by backwater during periods of high flow in the Yanco and Billabong creeks and is considered unreliable. The Coleambally Catchment Drain (CCD) is a supply point for WaterNSW customers and these flows are measured at the adjacent CICL delivery point rather than the WaterNSW gauging station.

The flow data for the CODD site has been calculated using data from the CODD (410133). CODD (410133) is subject to backflows from Billabong creek and is normally considered unreliable. In previous seasons we have substituted this data for flow volumes from the CICL FlumeGate CODOaklands, however due to the floods the FlumeGate was inoperable for the majority of the season. From 13 November 2022 to 20 December 2022 CODD (410133) was inoperable due to flooding, with the flow rate calculated by interpolation.

NSW DPI- Hydrometrics site number	NSW DPI- Water Licenced Site	NSW EPA Licenced Site	ACR Comment
410110	CODA	1. CODWonga	Salinity from CODA (410110) Flow from CICL FlumeGate CODWonga and from CODA (410110)
410108	DC800A	2. DC800A	Salinity and flow from DC800A (410108)
410191	CCD	3. CCD	Salinity from CCD (410191) Flow from CICL FlumeGate CCD Escape
410133	CODD	4. CODOaklands	Salinity and flow from CODD (410133)

Table 10.1: Data sources for licence sites

CICL applied for and received a Groundwater Works Approval (40WA418096) for a bore in 2020. This bore has not yet been constructed and as such no data for the Works Approval has been provided in this report.

11. New Measures to Limit Groundwater Recharge and Salinity Discharge

30 October 2023

The following section is provided to satisfy condition 2.9 of the CICL Monitoring and Reporting Plan, which requires a discussion of any new measures implemented during the year and results of measures commenced in the previous year to reduce recharge of groundwater and discharge of salt from the Area of Operations.

11.1 Water Use Policy

Coleambally Irrigation has a Water Use Policy in place which is intended to limit the environmental impacts of irrigation recharge on the water table. This policy imposes a water use intensity limit and limitations on the approved areas to farm rice on all farms with access to CICL drainage. The standard water use intensity maximum limit is 7.2 ML per ha, which was derived from CSIRO studies on sustainable irrigation limits for the Coleambally Irrigation Area in order to limit accessions to the water table. Given the low water use and a very small area of the CIA with watertables within 2 m of the surface the CICL Board adjusted the water use intensity limit for the 2022/23 season to 8 ML per ha.

11.2 Salinity Discharge

There were no new measures proposed or implemented in the 2022/23 season. Coleambally Irrigation is a net importer of salt and as such the effects of climate and water allocation conditions are not considered with regards to salinity and salt load.

12.1 Water Quality

CICL's surface water quality program is aimed at monitoring supply and drainage water quality within CICL's Area of Operations, including at the licensed discharge points. The program monitors flow, turbidity, dissolved oxygen, salinity, chemical and nutrient levels at various points to comply with licence conditions. CICL's water quality monitoring sites are shown in Figure 12.1.

At the licensed sites, flow, salinity and the temperature of drainage water are monitored continuously. Monthly water samples are collected from these sites and are analysed for the presence of chemicals as required by CICL's Environment Protection Licence. Water samples are also collected and analysed from one supply site at the Main Canal Off-take when flowing. An EC sensor was installed in July 2022 at the Main Canal Off-take to provide data used to calculate the salt load.

Figure 12.1: Water quality monitoring sites

30 October 2023

12.2 Environmental Monitoring

The following section is provided to satisfy condition M4 of the Environment Protection Licence, which requires irrigation wastewater sampling for Molinate for a period of 9 weeks from mid-October at licenced discharge sites.

There were no detections of Molinate exceeding either the Notification Level or Action Level (see Table 12.1). At DC800A Metolachlor was detected at a concentration above the Notification Level in week 6, and Diuron was detected above the Action level in week 6. At CODWonga Diuron was detected above the Notification Level in week 4, and above the Action Level in weeks 3 and 6.

Date	CODWonga Molinate (ug/L)	DC800A Molinate (ug/L)	CCD Molinate (ug/L)	Report No.
Week 1	<0.005	<0.005	<0.005	ES2236382
Week 2	<0.005	<0.005	<0.005	ES2237460
Week 3	<0.005	< 0.005	<0.005	ES2238259
Week 4	<0.005	<0.005	<0.005	ES2239321
Week 5	<0.005	<0.005	<0.005	ES2240327
Week 6	<0.005	<0.005	<0.005	ES2241399
Week 7	<0.005	<0.005	<0.005	ES2242145
Week 8	<0.005	<0.005	<0.005	ES2243215
Week 9	<0.005	<0.005	<0.005	ES2243801

Table 12.1 Environmental monitoring licence point results in 2022/23

30 October 2023

12.3 Chemical Use

The following section is provided to satisfy condition O3.9 of the Environment Protection Licence, which requires a record to be kept of all chemical applications greater than 10 litres of chemical concentrate directly to or within close proximity to any water within the infrastructure owned or controlled by CICL.

In absolute terms chemical usage by CICL is down 20% this season compared to last season.

Product	Active Constituent	Litres or Kg	Application	
Access	Triclopyr, Picloram	23	Boxthorns	
Associate	Metsulfuron methyl	31	Boxthorns	
Ammonium Sulphate	Ammonium Sulphate	140	Spray adjuvant	
Crucial	Glyphosate	13	Weed control	
Cutlass	Dicamba	635	Weed grass control	
Dalapon	2-2-DPA	195	Cumbungi, water couch	
Dicamba	Dicamba	34	Weed grass control	
Diesel		1,380	Spray adjuvant	
Glyphosate 450	Glyphosate	28	Weed control	
Grazon	Triclopr, Picloram	87	Brush weeds	
Roundup	Glyphosate	1,665	Weed control	
Terrad'or	Tiafenacil	67	Weed control	

Table 12.2: CICL chemical usage in 2022/23

12.4 Reportable Incidents

The following section is provided to satisfy condition R4.3 (c) of the Environment Protection Licence, which requires a summary of all pollution events which have been reported under the conditions of the licence.

High rainfall and flooding events from September 2022 to January 2023 led to significant flooding which precluded the ability to undertake remedial action. From 24 November to 18 January 2023 the NSW EPA waived the requirement to report pollution incidents occurring as a direct result of flooding. Despite significant ongoing flooding through December and January water quality testing was continued and incidents reported to the EPA.

There were 5 incidents in 2022/23 where the Pollution Incident Response Management Plan was activated.

On 6 September 2022, as part of our monthly water quality testing, Simazine was detected above Action Level and Chlorpyrifos was detected above Notification Level at DC800. In subsequent testing on 20 September 2022 neither Simazine nor Chlorpyrifos was detected above Notification Level, however Diuron was detected above Notification Level at DC800.

On 24 October 2022, as part of our weekly Environmental Monitoring Program, Diuron was detected above Action Level at CODWonga. In subsequent testing on 31 October 2022 Diuron was not detected above Notification Level at CODWonga, however Diuron was detected above Notification Level at DC800. On 7 October no pesticides were detected above Notification Level at any sites.

On 14 November 2022, as part of our weekly Environmental Monitoring Program, Diuron was detected above Action Level at CODWonga and DC800, and Metolachlor was detected above Notification Level at DC800. In subsequent testing on 22 November 2022 no pesticides were detected above Notification Level at any sites.

On 3 January 2023, as part of our Monthly water quality testing, Metolachlor and Diuron were detected above Notification Level at DC800.